Analysis 1
 9 April 2024

Slope

What is the slope of $y=1.5 x+9.3$?

- Answer: 1.5 , or $3 / 2$

What is the meaning of this fact? (What is the definition of "slope"?)

- Answer: for a point on $y=5 x+9$,
- If you increase x by 1 , you increase y by 1.5.
- If you increase x by 2 , you increase y by 3 .
- If you increase x by 26 , you increase y by 39 .
- If you increase x by 0.01 , you increase y by 0.015 .

Idea: $f^{\prime}(5)$ is a number that is the slope of the tangent line to $y=f(x)$ through the point $(5, f(5))$.

Idea: $f^{\prime}(x)$ is a function that gives the derivative for various x-values.

- Also written f^{\prime}
Df

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}
$$

Calculations: We can find formulas for $f^{\prime}(x)$ using

- $\left(x^{p}\right)^{\prime}=p x^{p-1} \begin{gathered}\text { if } p \text { is } \\ \text { constant } \\ \text { and }\end{gathered}$
- $(\sin x)^{\prime}=\cos x$
- $(\cos x)^{\prime}=-\sin x$ and algebra (e.g., $\sqrt{x}=x^{1 / 2}$) and "derivative rules":
- For any constant c and function $f, \quad(c f)^{\prime}=c \cdot f^{\prime}$.
- For any functions f and g,
$(f+g)^{\prime}=f^{\prime}+g^{\prime}$
- For any functions f and g,

$$
(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

Idea: $f^{\prime}(5)$ is a number that is the slope of the tangent line to $y=f(x)$ through the point $(5, f(5))$.

Idea: $f^{\prime}(x)$ is a function that gives the derivative for various x-values.

- Also written f^{\prime}
Df $\frac{\mathrm{d}}{\mathrm{d} x} f$
$\frac{\mathrm{d} f}{\mathrm{~d} x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}$

Questions:

What tasks can we answer using the derivative at a specific point?
What tasks can we answer using the derivative function?

Task 1: Give the slope of the tangent line to $y=3+\sqrt{2 \pi x} \cos (x)$ at $x=\frac{\pi}{2}$. By definition, this is $f^{\prime}\left(\frac{\pi}{2}\right)$ for the $f n . f(x)=3+\sqrt{2 \pi x} \cos (x)$.

Answer: $-\pi$
Task 2: Give an equation for the tangent line to $y=3+\sqrt{2 \pi x} \cos (x)$ at $x=\frac{\pi}{2}$. We will also need to use the number $f\left(\frac{\pi}{2}\right)=3$.

This is the same as "give an eqn. for the line through the point $(\pi / 2,3)$ with slope $-\pi$ ".

Answer: $y=3+(-\pi)\left(x-\frac{\pi}{2}\right)$, or $y=-\pi x+\frac{\pi^{2}}{2}+3$

For more about line equations and slope (not using derivalives at all), see List 0: Review.
8. If a point on the line

$$
y=-\frac{1}{3}(x-6)+8
$$

has an x-value of 15 , what is its y-value?
9 . If a point on the line

$$
y=-\frac{1}{3}(x-6)+8
$$

has an x-value of 6 , what is its y-value?
10. Graph each of the following:
(a) $y=3(x-1)+2$
(c) $y-2=3(x-1)$
(e) $3 x-y=1$
(b) $y=3 x-1$
(d) $y+1=3 x$
(f) $x=(y+1) / 3$
11. Give an example of a point that is on the line

$$
y-17=38(x-12)
$$

12. Describe the shape of $y=7$ in words. Describe $x=-2$ in words.
13. Give an equation for the line through the point $(-6,5)$ with slope 2 .
14. Give an equation for each of the following:
(a) the line through $(1,3)$ with slope 5 .
(b) the line through $(0,-9)$ with slope $\frac{2}{5}$.
(c) the line through $(-4.2,6.1)$ with slope 8.88 .
(d) the line through $(5,1)$ with slope -3 .

Calculation vs. ideas

Task: Find the tangent line to $y=\frac{1}{16} x^{3}-3 x$ at $\left(6, \frac{-9}{2}\right)$.

Calculation vs. ideas

Task: Find the tangent line to $y=\frac{1}{16} x^{3}-3 x$ at $\left(6, \frac{-9}{2}\right)$.

$$
\begin{gathered}
f(x)=\frac{1}{16} x^{3}-3 x \\
f^{\prime}(x)=\frac{3}{16} x^{2}-3 \\
f^{\prime}(6)=\frac{3 \times 36}{16}-3=\frac{15}{4} \\
y=\frac{-9}{2}+\frac{15}{4}(x-6)
\end{gathered}
$$

Calculation vs. ideas

Task: Find the "local maximum" of $\frac{1}{16} x^{3}-3 x$.

Calculation vs. ideas
Task: Find the "local maximum" of $\frac{1}{16} x^{3}-3 x$.

$$
\begin{gathered}
f(x)=\frac{1}{16} x^{3}-3 x \\
f^{\prime}(x)=\frac{3}{16} x^{2}-3 \\
\ldots ? \ldots ? \ldots
\end{gathered}
$$

(we will learn this Later)

$$
\begin{gathered}
x=-4 \\
f(-4)=\frac{1}{16}(-4)^{3}+12=8
\end{gathered}
$$

Increasing and decreasing

a. What is the value of

$$
f(x)=5 \sqrt{x}
$$

when $x=4$?
b. If x increases from 4 (becoming slightly more than 4), does $f(x)$ increase or decrease?
C. If x decreases from- 1 dec $f(x)$-inerease-r-deerease?
d. What is the value of $g(x)=\frac{6}{x}$ when $x=2$?
e. If x increases from 2 , does $g(x)$ increase or decrease?

If we know
what happens to $f(x)$ when x
increases, we
know the
opposite
happens when x decreases.

Increasing and decreasing

Definitions: We say $f(x)$ is strictly increasing on an interval if for any a, b in that interval with $a<b$ we have $f(b)>f(a)$.

We say $f(x)$ is strictly decreasing on an interval if ... $f(b)<f(a)$.

Facts: If $f(x)$ is strictly increasing on an interval, then $f^{\prime}(x)>0$ for all x-values in that interval. If $f(x)$ is strictly decreasing, then $f^{\prime}(x)<0$.

Increasing and decreasing

Zeno of Elea wrote three Paradoxes of Motion, such as asking how an arrow can possibly move if it is motionless at every instant in time.

Today, limits and derivatives can resolve many of his questions.

Definition: We say $f(x)$ is increasing at $x=c$ if $f^{\prime}(c)>0$, and we say $f(x)$ is decreasing at $x=c$ if $f^{\prime}(c)<0$.

- You can argue philosophically about whether f can really be increasing when x is exactly c, but it is a helpful word to use.

Increasing and decreasing

- Intervals where this functions is increasing

$$
-1<x<2
$$

$$
\text { and } 4<x<6
$$

- Intervals where this function is decreasing

$$
\begin{aligned}
& x<-1 \\
& \text { and } 2<x<4 \\
& \text { and } x>6
\end{aligned}
$$

You can write $(-1,2) \cup(4,5)$ and $(-\infty,-1) \cup(2,4) \cup(5, \infty)$ if you prefer.

Critical points

A critical point of f is an x-value in the domain of f at which $f^{\prime}(x)$ is either 0 or doesn't exist.

- f^{\prime} is zero \rightarrow graph of f has a horizontal tangent line;
- f^{\prime} does't exist \rightarrow graph of f has a vertical tangent line, or corner, or jump.

A function can only change from increasing to decreasing (or dec. to inc.) at a critical point.

Task 1: Find the critical point(s) of $f(x)=\frac{1}{8} x^{4}-4 x+3$.

Task 1: Find the critical point(s) of $f(x)=\frac{1}{8} x^{4}-4 x+3$.

$$
x=2 \text { only }
$$

- Task 2: On what interval(s) is $f(x)=\frac{1}{8} x^{4}-4 x+3$ increasing?

$$
x>2 \quad \text { or } \quad(2, \infty)
$$

- Task 3: On what interval(s) is $f(x)=\frac{1}{8} x^{4}-4 x+3$ decreasing?

$$
x<2 \quad \text { or } \quad(-\infty, 2)
$$

Which of the graphs A-D is the derivative of the graph on the left?

Critical points

A number c is a "critical point" of $f(x)$...

- if $f^{\prime}(c)=0$ (horizontal tangent line) or
- if $f^{\prime}(c)$ doesn't exist (vertical tangent line, or corner, or jump).

Increasing and decreasing
On an interval or at a single point,

- if $f^{\prime}>0$ then f is increasing,
- if $f^{\prime}<0$ then f is decreasing.

Minimum and maximum

- How do these relate to derivatives?

Extrema (min and max)

We say $f(x)$ has...

- an absolute maximum at $x=c$ if $f(c) \geq f(x)$ for all allowed x values.
- an absolute minimum at $x=c$ if $f(c) \leq f(x)$ for all allowed x values.
- a local maximum at $x=c$ if $f(c) \geq f(x)$ for all x in some open interval containing c.
- a local minimum at $x=c$ if $f(c) \leq f(x)$ for all x in some open interval containing c.
- an absolute extreme if it has a absolute max or absolute min.
- a local extreme if it has a local max or local min.

Extrema (min and max)

The plural of maximum is maxima or maximums.
Or you can just write "maxs" or "max".

1 minimum (or 1 min) $\rightarrow 2$ minima or 2 minimums or 2 mins or 2 min .

1 extremum (or 1 extreme) $\rightarrow 2$ extrema or 2 extremes.

Types of extremes

- Local maximum(s)
$A C E$
- Local minimum(s)

B D

- Absolute maximum(s)
$C E$
- Absolute minimum(s) (none)

Types of extremes

What if we only

 look at the interval$$
0 \leq x \leq 3 ?
$$

- Absolute maximum(s)

$$
C(x=1)
$$

- Absolute minimum(s)

$$
A E x=3, y=-1
$$

